目前,主流的分词办法有两种,一种是基于统计模型的文字处理,另外一种是基于字符串匹配的逆向最大匹配法。
基于统计模型的文字处理
从形式上看,词是稳定的字的组合,因此在上下文中,相邻的字同时出现的次数越多,就越有可能构成一个词。因此字与字相邻共现的频率或概率能够较好的反映成词的可信度。可以对语料中相邻共现的各个字的组合的频度进行统计,计算它们的互现信息。定义两个字的互现信息,计算两个汉字X、Y的相邻共现概率。互现信息体现了汉字之间结合关系的紧密程度。当紧密程度高于某一个阈值时,便可认为此字组可能构成了一个词。这种方法只需对语料中的字组频度进行统计,不需要切分词典,因而又叫做无词典分词法或统计取词方法。但这种方法也有一定的局限性,会经常抽出一些共现频度高、但并不是词的常用字组,例如“这一”、“之一”、“有的”、“我的”、“许多的”等,并且对常用词的识别精度差,时空开销大。实际应用的统计分词系统都要使用一部基本的分词词典(常用词词典)进行串匹配分词,同时使用统计方法识别一些新的词,即将串频统计和串匹配结合起来,既发挥匹配分词切分速度快、效率高的特点,又利用了无词典分词结合上下文识别生词、自动消除歧义的优点。(上文引自SEO专家论坛)
基于统计模型的文字处理,因为技术性比较高,而且只是使用在搜索引擎分词算法的过程中,如果学会,对于SEO的帮助会更大,各位可以加入我的SEO培训班进行深入讨论。这里更多的说一下基于字符串匹配的逆向最大匹配法。
一般来说,我们在SEO中使用最多的分词办法就是基于字符串匹配的逆向最大匹配法。这个办法其实很简单。我们以一个简单的例子来说明。
在搜索引擎技术中,中文分词对于影响搜索引擎结果排序有着至关重要的作用。我们在实际的搜索引擎优化中,为了避免很多主关键词的大量竞争,也会使用到中文分词技术来做SEO优化。举个简单的例子,假如我们需要优化一个内容是“轴承”的网页,那么想要这个关键词在搜索引擎中排名更好,那就是很难的一件事了。因为“轴承”这个关键词热度太高,所以想要通过SEO手段去将其优化到搜索结果的首页是一件非常难的事。在这个时候我们经常会使用长尾关键词去优化这样的高热度关键词,也就是说,我们经常会优化一些例如“北京轴承销售商”、“北京进口轴承”等这样的关键词。而想要把这样的关键词做到搜索结果的前列,对于中文分词技术的把握和对于关键词的布局,有很大的重要性。
免责声明:本站所有资讯内容搜集整理于互联网或者网友提供,并不代表本网赞同其观点,仅供学习与交流使用,如果不小心侵犯到你的权益,如果你对文章内容、图片和版权等问题存在异议,请及时联系我们删除该信息。